Relational Algebra

Study Chapter 4.1-4.2
Relational Query Languages

- **Query languages**: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- **Query Languages !≠ programming languages!**
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.
Formal Relational Query Languages

- Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:
 - **Relational Algebra**: More operational, very useful for representing execution plans.
 - **Relational Calculus**: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative.)
Preliminaries

A query is applied to relation instances, and the result of a query is also a relation instance.

- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.

Positional vs. named-field notation:

- Positional notation (i.e. R[0]) easier for formalism, named-field notation (i.e. R.name) more readable.
- Both available in SQL
What is an “Algebra”

- Set of operands and a set of composable operations that they are “closed” under
- Examples
 - Boolean algebra - operands are the logical values True and False, and operations include AND(), OR(), NOT(), etc.
 - Integer algebra
 operands are the set of integers, operands include ADD(), SUB(), MUL(), NEG(), etc. many of which have special in-fix operator symbols (+, -, *, -)
- In our case “operands” are relations, what are the operators?
Example Instances

- “Sailors” and “Reserves” relations for our examples.
- We’ll use positional or named field notation, assume that names of fields in query results are “inherited” from names of fields in query input relations.

<table>
<thead>
<tr>
<th>R1</th>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1</th>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2</th>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - Projection (π) Deletes unwanted columns from relation.
 - Cross-product (\times) Allows us to combine two relations.
 - Set-difference (\neg) Tuples in reln. 1, but not in reln. 2.
 - Union (\cup) Tuples in reln. 1 and in reln. 2.

- Additional operations:
 - Intersection, join, division, renaming: Not essential, but (very!) useful.

Since each operation returns a relation, operations can be composed! (Algebra is “closed”.)
Projection

- Deletes attributes that are not in projection list.
- *Schema* of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??)
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)

<table>
<thead>
<tr>
<th>sname</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>yuppy</td>
<td>9</td>
</tr>
<tr>
<td>lubber</td>
<td>8</td>
</tr>
<tr>
<td>guppy</td>
<td>5</td>
</tr>
<tr>
<td>rusty</td>
<td>10</td>
</tr>
</tbody>
</table>

\[
\pi_{\text{sname}, \text{rating}}(S2)
\]

<table>
<thead>
<tr>
<th>age</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>55.5</td>
<td></td>
</tr>
</tbody>
</table>

\[
\pi_{\text{age}}(S2)
\]
Selection

- Selects rows that satisfy \textit{selection condition}.
- No duplicates in result! (Why?)
- \textit{Schema} of result identical to schema of (only) input relation.
- \textit{Result} relation can be the \textit{input} for another relational algebra operation! (\textit{Operator composition}.)

\[
\sigma_{\text{rating} > 8}(S2)
\]

\[
\pi_{\text{snama, rating}}(\sigma_{\text{rating} > 8}(S2))
\]

<table>
<thead>
<tr>
<th>sid</th>
<th>snama</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[
\sigma_{\text{rating} > 8}(S2)
\]

\[
\pi_{\text{snama, rating}}(\sigma_{\text{rating} > 8}(S2))
\]
Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be **union-compatible**:
 - Same number of fields.
 - `Corresponding` fields have the same type.
- What is the *schema* of result?

<table>
<thead>
<tr>
<th>sid</th>
<th>surname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[S1 \cup S2 \]

\[S1 - S2 \]

\[S1 \cap S2 \]
Cross-Product

- Each row of S1 is paired with each row of R1.
- *Result schema* has one field per field of S1 and R1, with field names `inherited` if possible.
 - **Conflict**: Both S1 and R1 have a field called *sid*.

<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

- **Renaming operator**: $\rho (C(1 \rightarrow \text{sid1}, 5 \rightarrow \text{sid2}), S1 \times R1)$
Joins

- **Condition Join:** \(R \bowtie_c S = \sigma_c (R \times S) \)

<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

\[S1 \bowtie S1.sid < R1.sid \]

- **Result schema** same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a *theta-join*.
Joins

- **Equi-Join**: A special case of condition join where the condition c contains only *equalities*.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

 $S_1 \bowtie_{sid} R_1$

- **Result schema** similar to cross-product, but only one copy of fields for which equality is specified.

- **Natural Join**: Equijoin on *all* common fields.
Division

- Not supported as a primitive operator, but useful for expressing queries like:
 Find sailors who have reserved **all** boats.

- Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{x \mid \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., A/B contains all x tuples (sailors) such that for **every** y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.

- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.
Examples of Division A/B

<table>
<thead>
<tr>
<th>A</th>
<th>$A/B1$</th>
<th>$A/B2$</th>
<th>$A/B3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sno</td>
<td>pno</td>
<td>pno</td>
<td>pno</td>
</tr>
<tr>
<td>s1</td>
<td>p1</td>
<td>p2</td>
<td>p1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td>p2</td>
<td>p2</td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>p4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p4</td>
<td></td>
<td>s1</td>
</tr>
</tbody>
</table>

Division Examples

- **B1**:
 - p1
 - p2
- **B2**:
 - p2
 - p4
- **B3**:
 - p4

This table illustrates the division A/B with sets $B1$, $B2$, and $B3$.
Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not "disqualified" by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

\[
\text{Disqualified x values: } \pi_x ((\pi_x(A) \times B) - A)
\]

A/B: \[\pi_x(A) - \text{all disqualified tuples}\]
Names of sailors who’ve reserved boat #103

- Solution 1: \(\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{Sailors}) \)

- Solution 2: \(\rho (\text{Temp1}, \sigma_{bid=103} \text{Reserves}) \)
 \(\rho (\text{Temp2}, \text{Temp1} \bowtie \text{Sailors}) \)
 \(\pi_{sname}(\text{Temp2}) \)

- Solution 3: \(\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie \text{Sailors})) \)
Names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:

\[\pi_{\text{fname}}((\sigma_{\text{color} = 'red'} \text{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors}) \]

- A more efficient solution:

\[\pi_{\text{fname}}(\pi_{\text{sid}}((\pi_{\text{bid}}(\sigma_{\text{color} = 'red'} \text{Boats}) \bowtie \text{Res}) \bowtie \text{Sailors}) \]

A query optimizer can find this, given the first solution!
Sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:

\[
\rho \ (\sigma_{\text{color} = '\text{red}' \lor \text{color} = '\text{green'} \ (\text{Boats}))
\]

\[
\pi_{\text{sname}} (\text{Tempboats} \bowtie \text{Reserves} \bowtie \text{Sailors})
\]

- Can also define Tempboats using union! (How?)

- What happens if \(\lor \) is replaced by \(\land \) in this query?
Sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

\[
\rho (\text{Tempred}, \pi_{\text{sid}}((\sigma_{\text{color} = 'red'} \text{Boats}) \bowtie \text{Reserves}))
\]
\[
\rho (\text{Tempgreen}, \pi_{\text{sid}}((\sigma_{\text{color} = 'green'} \text{Boats}) \bowtie \text{Reserves}))
\]
\[
\pi_{\text{aname}}((\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors})
\]
Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

 \[\rho (\pi_{\text{sid, bid}} \text{Reserves}) / (\pi_{\text{bid}} \text{Boats}) \]

 \[\pi_{\text{sname}} (\text{Tempсидs} \bowtie \text{Sailors}) \]

- To find sailors who’ve reserved all ‘Interlake’ boats:

 \[\ldots / \pi_{\text{bid}} (\sigma_{\text{bname} = 'Interlake'} \text{Boats}) \]
Summary

- The relational model has rigorously defined query languages that are simple and powerful.

- Relational algebra is more operational; useful as internal representation for query evaluation plans.

- Several ways of expressing a given query; a query optimizer should choose the most efficient version.