Lecture 14:
DNA Sequencing

Study Chapter 8.9
DNA Sequencing

- Shear DNA into millions of small fragments
- Read 500 – 700 nucleotides at a time from the small fragments (Sanger method)
Fragment Assembly

- Assembles the individual overlapping short fragments (reads) into a genomic sequence
- Shortest Superstring problem from last time is an overly simplified abstraction

Problems:
- DNA read error rate of 1% to 3%
- Can’t separate coding and template strands
- DNA is full of repeats

Let’s take a closer look
Traditional DNA Sequencing

DNA

Shake & Break
(by Digestion or Sonication)

DNA fragments

Clone

Vector
Circular genome
(bacterium, plasmid)

Known location
(restriction site)
Different Types of Vectors

<table>
<thead>
<tr>
<th>VECTOR</th>
<th>Size of insert (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmid</td>
<td>2,000 - 10,000</td>
</tr>
<tr>
<td>Cosmid</td>
<td>40,000</td>
</tr>
<tr>
<td>BAC (Bacterial Artificial Chromosome)</td>
<td>70,000 - 300,000</td>
</tr>
<tr>
<td>YAC (Yeast Artificial Chromosome)</td>
<td>> 300,000 Not used much recently</td>
</tr>
</tbody>
</table>
Dideoxy (Sanger) Sequencing

Template strand -
```
g t a a g a c t g t
c a t t c t g a c a
```

Coding strand -
```
c a t t c t g a c a
```

- **ddT Reaction** -
```
c a t t c t g a c a
```

- **ddC Reaction** -
```
c a t t t c a t t c t g a c
```

- **ddG Reaction** -
```
c a t t t c t g a c
```

- **ddA Reaction** -
```
c a t t t c t g a c a
```

dideoxyribonucleotides – missing a hydroxyl group on the sugar-phosphate backbone.

Good for up to 1000 base pairs.
Challenging to Read Answers

Electropherogram
Reading an Electropherogram

• Issues
 • Noisy start up due to anomalous migration of short fragments that carry bulky dyes
 • Traces become less uniform as run proceeds
 • Large dye responses can overwhelm succeeding lower amplitude responses
 • Occasional mismatches of reaction with template

• Methods for calling the nucleotides: PHRED
 – Base calls
 – Maintains quality scores
 – Monitors peak positions
Shotgun Sequencing

Genomic segment

cut many times at random (Shotgun)

Get one or two reads from the ends of each segment

~500 bp ~500 bp
Fragment Assembly

Cover region with ~7-fold redundancy
Overlap reads and extend to reconstruct the original genomic region
Read Coverage

Length of genomic segment: \(L \)
Number of reads: \(n \) Coverage \(C = \frac{n \cdot l}{L} \)
Length of each read: \(l \)

How much coverage is enough?

Lander-Waterman model:
Assuming uniform distribution of reads, \(C = 10 \) results in 1 gapped region per 1,000,000 nucleotides
Challenges in Fragment Assembly

• **Repeats**: A major problem for fragment assembly
• > 50% of human genome is repeats:
 - over 1 million *Alu* repeats (about 300 bp)
 - about 200,000 LINE repeats (1000 bp and longer)

Green and blue fragments are interchangeable when assembling repetitive DNA
Repeat Types

- **Low-Complexity DNA** (e.g. ATATATATACATA…)
- **Microsatellite repeats** $(a_1…a_k)^N$ where $k \sim 3-6$
 (e.g. CAGCAGTAGCAGCACCAG)
- **Transposons/retrotransposons**
 - **SINE** Short Interspersed Nuclear Elements
 (e.g., *Alu*: ~300 bp long, 10^6 copies)
 - **LINE** Long Interspersed Nuclear Elements
 ~500 - 5,000 bp long, 200,000 copies
 - **LTR retroposons** Long Terminal Repeats (~700 bp) at each end
- **Gene Families** genes duplicate & then diverge
- **Segmental duplications** ~very long, very similar copies
Overlap/Layout/Consensus

Assembler programs: ARACHNE, PHRAP, CAP, TIGR, CELERA

Common Approach:
- **Overlap:** find potentially overlapping reads
- **Layout:** merge reads into **contigs** and contigs into **supercontigs**
- **Consensus:** derive the DNA sequence and correct read errors

![Diagram showing the process of overlap, layout, and consensus in DNA sequencing.](image)
Overlap

- Find the best match between the suffix of one read and the prefix of another (shortest superstring)

- Due to sequencing errors, most algorithms use dynamic programming to find the optimal overlap alignment

- Filter out fragment pairs that do not share a significantly long common substring
Overlapping Reads

- Make histogram all \(k\)-mers in reads
 \((k \sim 20-24)\)
- Find read pairs sharing a \(k\)-mer
- Extend alignment –
 throw away if not >95% similar

\[
\text{TACA} \quad \text{TAGATTACACAGATTACT} \quad \text{GA}
\]
\[
\text{TACA} \quad \text{TAGATTACACAGATTACT} \quad \text{TAGT}
\]
Histogram Example

\[v = \text{tagattacacagattatttga} \]

- **Histogram of 3-mers (18 total)**

<table>
<thead>
<tr>
<th></th>
<th>A_2</th>
<th>C_2</th>
<th>G_2</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0:0:0:0</td>
<td>2:0:0:0</td>
<td>2:0:0:0</td>
<td>0:0:0:3</td>
</tr>
<tr>
<td>C_1</td>
<td>0:1:1:0</td>
<td>0:0:0:0</td>
<td>0:0:0:0</td>
<td>0:0:0:0</td>
</tr>
<tr>
<td>G_1</td>
<td>0:0:0:2</td>
<td>0:0:0:0</td>
<td>0:0:0:0</td>
<td>0:0:0:0</td>
</tr>
<tr>
<td>T_1</td>
<td>0:1:1:1</td>
<td>0:0:0:0</td>
<td>1:0:0:0</td>
<td>2:0:1:0</td>
</tr>
</tbody>
</table>
Overlapping Reads and Repeats

- Does this really speed up the process?
- A k-mer that appears N times, initiates N^2 comparisons
- For an Alu that appears 10^6 times $\rightarrow 10^{12}$ comparisons – too much
- **How to avoid repeats:**
 Discard all k-mers that appear more than $t \times \text{Coverage}$, $(t \sim 10)$
Finding Overlapping Reads

k-mer table makes it easy to create local multiple alignments from the overlapping reads
Finding Overlapping Reads (cont’d)

• Correct errors using multiple alignment and consensus scoring

```
C: 20 C: 20
T: 30 C: 35
C: 35 C: 35
T: 30 C: 35
C: 40 C: 40
```

• Score alignments

• Accept alignments with good scores
• Repeats are still a major challenge
• Do two aligned fragments really overlap, or are they from two copies of a repeat?
• Solution: repeat masking – hide the repeats!!!
• Masking results in high rate of misassembly (up to 20%)
• Misassembly means a lot more work at the finishing step
2. Merge Reads into Contigs

- Overlap graph:
 - Nodes: reads $r_1 \ldots r_n$
 - Edges: overlaps (r_i, r_j, shift, orientation, score)

Reads that come from two regions of the genome (blue and red) that contain the same repeat

Note: of course, we don’t know the “color” of these nodes
2. Merge Reads into Contigs

We want to merge reads up to potential repeat boundaries.
2. Merge Reads into Contigs

- Ignore non-maximal reads
- Merge only maximal reads into contigs
2. Merge Reads into Contigs

- Remove transitivity inferable overlaps
 - If read r overlaps to the right reads r_1, r_2, and r_1 overlaps r_2, then (r, r_2) can be inferred by (r, r_1) and (r_1, r_2)
2. Merge Reads into Contigs
2. Merge Reads into Contigs

- Ignore “hanging” reads, when detecting repeat boundaries
Overlap graph after forming contigs

A X' B X'' C

Target

Fragments

X'+X''

overcollapsed unitig

A

repeat boundary

B

C

U-unitig

Unitigs:
Gene Myers, 95
Repeats, errors, and contig lengths

• Repeats shorter than read length are easily resolved
 – Read that spans across a repeat disambiguates order of flanking regions

• Repeats with more base pair diffs than sequencing error rate are OK
 – We throw overlaps between two reads in different copies of the repeat

• To make the genome appear less repetitive, try to:
 – Increase read length
 – Decrease sequencing error rate

Role of error correction:
Discards up to 98% of single-letter sequencing errors
 decreases error rate
 ⇒ decreases effective repeat content
 ⇒ increases contig length
2. Merge Reads into Contigs

- Insert non-maximal reads whenever unambiguous
Link Contigs into Supercontigs

Normal density

Too dense: Overcollapsed?

Inconsistent links: Overcollapsed?
Link Contigs into Supercontigs (cont’d)

Find all links between unique contigs

Connect contigs incrementally, if \(\geq 2 \) links
Link Contigs into Supercontigs (cont’d)

Fill gaps in supercontigs with paths of overcollapsed contigs
Link Contigs into Supercontigs (cont’d)

Define $G = (V, E)$

$V := \text{contigs}$

$E := (A, B)$ such that $d(A, B) < C$

Reason to do so: Efficiency; full shortest paths cannot be computed
Link Contigs into Supercontigs

(cont’d)

Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in G passing only from contigs in T
Consensus

• A consensus sequence is derived from a profile of the assembled fragments

• A sufficient number of reads is required to ensure a statistically significant consensus

• Reading errors are corrected
Derive Consensus Sequence

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting
Some Assemblers

- **PHRAP**
 - Early assembler, widely used, good model of read errors
 - Overlap $O(n^2) \rightarrow$ layout (no mate pairs) \rightarrow consensus

- **Celera**
 - First assembler to handle large genomes (fly, human, mouse)
 - Overlap \rightarrow layout \rightarrow consensus

- **Arachne**
 - Public assembler (mouse, several fungi)
 - Overlap \rightarrow layout \rightarrow consensus

- **Phusion**
 - Overlap \rightarrow clustering \rightarrow PHRAP \rightarrow assemblage \rightarrow consensus

- **Euler**
 - Indexing \rightarrow Euler graph \rightarrow layout by picking paths \rightarrow consensus
EULER Fragment Assembly

- Traditional “overlap-layout-consensus” technique has a high rate of mis-assembly

- EULER uses the Eulerian Path approach borrowed from the SBH problem

- Fragment assembly without repeat masking can be done in linear time with greater accuracy
Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others.

Find a path visiting every VERTEX exactly once: Hamiltonian path problem
Overlap Graph: Eulerian Approach

Placing each repeat edge together gives a clear progression of the path through the entire sequence.

Find a path visiting every EDGE exactly once:
Eulerian path problem
Multiple Repeats

Can be easily constructed with any number of repeats
Construction of Repeat Graph

- **Construction of repeat graph from** \(k \) – **mers**: Emulates an SBH experiment with a huge (virtual) DNA chip.

- **Breaking reads into** \(k \) – **mers**: Transform sequencing data into virtual DNA chip data.
Construction of Repeat Graph (cont’d)

• Error correction in reads: “consensus first” approach to fragment assembly. Makes reads (almost) error-free BEFORE the assembly even starts.

• Using reads and mate-pairs to simplify the repeat graph (Eulerian Superpath Problem).
Approaches to Fragment Assembly

Find a path visiting every VERTEX exactly once in the OVERLAP graph:

Hamiltonian path problem

NP-complete: algorithms unknown
Approaches to Fragment Assembly (cont’d)

Find a path visiting every EDGE exactly once in the REPEAT graph:

Eulerian path problem

Linear time algorithms are known
Conclusions

• Graph theory is a vital tool for solving biological problems

• Wide range of applications, including sequencing, motif finding, protein networks, and many more
References

• Simons, Robert W. *Advanced Molecular Genetics Course, UCLA* (2002).
 http://www.mimg.ucla.edu/bobs/C159/Presentations/Benzer.pdf

 http://ai.stanford.edu/~serafim/CS262_2006/