Lecture 24: Randomized Algorithms

Chapter 12
Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.
Select

- **Select(L, k)** finds the k^{th} smallest element in L
- **Select(L,1)** find the smallest…
 - Well known $O(n)$ algorithm
 \[
 \text{minv} = \text{HUGE} \\
 \text{for } v \text{ in L:} \\
 \quad \text{if } (v < \text{minv)}: \\
 \quad \quad \text{minv} = v
 \]
- **Select(L, len(L)/2)** find the median…
 - How?
 - median = sorted(L)[len(L)/2] $\rightarrow O(n \log n)$
- **Can we find medians, or 1st quartiles in $O(n)$?**
Select

• **Select(L, k)** finds the \(k^{th}\) smallest element in \(L\)

 – Select an element \(m\) from unsorted list \(L\) and partition \(L\) the array into two smaller lists:

 \[
 L_{lo} \text{ - elements smaller than } m
 \]

 and

 \[
 L_{hi} \text{ - elements larger than } m.
 \]

• If \(\text{len}(L_{lo}) > k\) then

 Select\((L_{lo}, k)\)

• else if \(k > \text{len}(L) - \text{len}(L_{hi})\) then

 Select\((L_{hi}, k - \text{len}(L) + \text{len}(L_{hi}))\)

• else \(m\) is the \(k^{th}\) smallest element
Example of Select(L, 5)

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as \(m \)

\[L = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \]

Our Selection
Example of Select (cont’d)

Step 2: Split the array into \(L_{lo} \) and \(L_{hi} \)

\[
L_{lo} = \{ 3, 2, 4, 5, 1, 0 \}
\]

\[
L = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]

\[
L_{lo} = \{ 8, 7, 9 \}
\]
Example of Select (cont’d)

Step 3: Recursively call Select on either L_{lo} or L_{hi} until $\text{len}(L_{lo}) = k$, then return m.

- $\text{len}(L_{lo}) > 5 \rightarrow \text{Select}([3, 2, 4, 5, 1, 0], 5)$
 - $m = 3$
 - $L_{lo} = \{2, 1, 0\}$, $L_{hi} = \{4, 5\}$

- $\text{len}(L_{lo}) < 5 \rightarrow \text{Select}([4, 5], 5 - 6 + 2)$
 - $m = 4$
 - $L_{lo} = \{\text{empty}\}$, $L_{hi} = \{5\}$

- $\text{len}(L_{lo}) < 1 \rightarrow \text{Select}([5], 1 - 2 + 1)$
 - $m = 5$
 - $L_{lo} = \{\text{empty}\}$, $L_{hi} = \{\text{empty}\}$

- $\text{len}(L_{lo}) = 0 \rightarrow 5$
def select(L, k):
 value = L[0]
 Llo = [t for t in data if t < value]
 Lhi = [t for t in data if t > value]
 above = len(L) - len(Lhi)
 if (k < len(Llo)):
 return select(Llo, k)
 elif (k >= above):
 return select(Lhi, k-above)
 else:
 return value
Select Analysis with Good Splits

- Runtime depends on our selection of \(m \):

 - A good selection will split \(L \) evenly such that

 \[
 |L_{lo}| = |L_{hi}| = |L|/2
 \]

 - The recurrence relation is:

 \[
 T(n) = T(n/2)
 \]

 - \(n + n/2 + n/4 + n/8 + n/16 + \ldots = 2n \Rightarrow O(n) \)

Same as search for minimum
Select Analysis with Bad Splits

However, a poor selection will split L unevenly and in the worst case, all elements will be greater or less than m so that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is

$$T(n) = T(n-1)$$

In this case, the runtime is $O(n^2)$.

Our dilemma:

$O(n)$ or $O(n^2)$,

depending on the list… or $O(n \log n)$ independent of it
Select Analysis (cont’d)

• Select seems risky compared to sort
• To improve Select, we need to choose m
to give good ‘splits’
• It can be proven that to achieve $O(n)$ running
time, we don’t need a perfect splits, just
reasonably good ones.
• In fact, if both subarrays are at least of size $n/4$,
then running time will be $O(n)$.
• This implies that half of the choices of m make
good splitters.
To improve Select, randomly select m.

Since half of the elements will be good splitters, if we choose m at random we will get a 50% chance that m will be a good choice.

This approach will make sure that no matter what input is received, the expected running time is small.
def randomizedSelect(L, k):
 value = random.choice(L)
 Llo = [t for t in L if t < value]
 Lhi = [t for t in L if t > value]
 above = len(L) - len(Lhi)
 if (k < len(Llo)):
 return randomizedSelect(Llo, k)
 elif (k >= above):
 return randomizedSelect(Lhi, k-above)
 else:
 return value
Randomized Select Analysis

- Worst case runtime: $O(n^2)$
- *Expected runtime*: $O(n)$.
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Randomized Select will always return the correct answer, which offers a way to classify Randomized Algorithms.
Two Types of Randomized Algorithms

- **Las Vegas Algorithms** – always produce the correct solution (ie. RandomizedQuickSort)

- **Monte Carlo Algorithms** – do not always return the correct solution.

- Las Vegas Algorithms are always preferred, but they are often hard to come by.
The Motif Finding Problem

Motif Finding Problem: Given a list of t sequences each of length n, find the “best” pattern of length l that appears in each of the t sequences.
A New Motif Finding Approach

• **Motif Finding Problem:** Given a list of t sequences each of length n, find the “best” pattern of length l that appears in each of the t sequences.

• **Previously:** we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.

• **Now:** randomly select possible locations and find a way to greedily change those locations until we have converged to the hidden motif.
Profiles Revisited

- Let $s=(s_1,...,s_t)$ be the set of starting positions for l-mers in our t sequences.
- The substrings corresponding to these starting positions will form:
 - $t \times l$ alignment matrix and
 - $4 \times l$ profile matrix* P.

*We make a special note that the profile matrix will be defined in terms of the frequency of letters, and not as the count of letters.
Scoring Strings with a Profile

• Let l-mer \(a = a_1, a_2, a_3, \ldots a_l \)

• \(P(a | P) \) is defined as the probability that an \(l \)-mer \(a \) was created by the Profile \(P \).

• If \(a \) is very similar to the consensus string of \(P \) then \(P(a | P) \) will be high.

• If \(a \) is very different, then \(P(a | P) \) will be low.

\[
Prob(a | P) = \prod_{i=1}^{n} p_{a_i, i}
\]
Given a profile: \(P = \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7/8</th>
<th>3/8</th>
<th>0</th>
<th>1/8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>5/8</td>
<td>3/8</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>7/8</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
</tbody>
</table>

The probability of the consensus string:

\[
\text{Prob}(aaacct|P) = ???
\]
Scoring Strings with a Profile (cont’d)

Given a profile: \(P = \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>0</td>
<td>1/8</td>
<td>1/4</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
</tr>
</tbody>
</table>

The probability of the consensus string:

\[\text{Prob}(\text{aacct}|P) = \frac{1}{2} \times \frac{7}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{3}{8} \times \frac{7}{8} = 0.033646 \]
Given a profile: \(P = \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>0</td>
<td>1/8</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>1/2</td>
<td>5/8</td>
<td>3/8</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>7/8</td>
</tr>
</tbody>
</table>

The probability of the consensus string:
\[
Prob(\text{aaacct}|P) = \frac{1}{2} \times \frac{7}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{3}{8} \times \frac{7}{8} = .033646
\]

Probability of a different string:
\[
Prob(\text{atacag}|P) = \frac{1}{2} \times \frac{1}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{1}{8} \times \frac{1}{8} = .001602
\]
P-Most Probable l-mer

Define the P-most probable l-mer from a sequence as an l-mer in that sequence which has the highest probability of being created from the profile P.

Given a sequence $= \text{ctataaacctttacatc}$, find the P-most probable l-mer.
P-Most Probable l-mer (cont’d)

- **First try:** `ctataaaccttacatc`
- **Second try:** `ctataaaccttacatc`
- **Third try:** `ctataaaccttacatc`

Find the $\text{Prob}(a|P)$ of every possible 6-mer:

<table>
<thead>
<tr>
<th></th>
<th>1/2</th>
<th>7/8</th>
<th>3/8</th>
<th>0</th>
<th>1/8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>5/8</td>
<td>3/8</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>7/8</td>
</tr>
<tr>
<td>T</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- Continue this process to evaluate every possible 6-mer.
P-Most Probable l-mer (cont’d)

Compute \(\text{prob}(a|P) \) for every possible 6-mer:

| String, Highlighted in Red | Calculations | \(\text{prob}(a|P) \) |
|----------------------------|--------------|-----------------------|
| ctataaaaccttacat | 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 | 0 |
| ctataaaaccttacat | 1/2 x 7/8 x 0 x 0 x 1/8 x 0 | 0 |
| ctataaaaccttacat | 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 | 0 |
| ctataaaaccttacat | 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 | 0 |
| ctataaaaccttacat | 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 | .0336 |
| ctataaaaccttacat | 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 | .0299 |
| ctataaaaccttacat | 1/2 x 0 x 1/2 x 0 1/4 x 0 | 0 |
| ctataaaaccttacat | 1/8 x 0 x 0 x 0 x 1/8 x 0 | 0 |
| ctataaaaccttacat | 1/8 x 1/8 x 0 x 0 x 3/8 x 0 | 0 |
| ctataaaaccttacat | 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 | .0004 |
P-Most Probable l-mer (cont’d)

P-Most Probable 6-mer in the sequence is aaacctct:

<table>
<thead>
<tr>
<th>String, Highlighted in Red</th>
<th>Calculations</th>
<th>$\text{Prob}(a \mid P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/8 \times 1/8 \times 3/8 \times 0 \times 1/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/2 \times 7/8 \times 0 \times 0 \times 1/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/2 \times 1/8 \times 3/8 \times 0 \times 1/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/8 \times 7/8 \times 3/8 \times 0 \times 3/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8$</td>
<td>.0336</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/2 \times 7/8 \times 1/2 \times 5/8 \times 1/4 \times 7/8$</td>
<td>.0299</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/2 \times 0 \times 1/2 \times 0 \times 1/4 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/8 \times 0 \times 0 \times 0 \times 1/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/8 \times 1/8 \times 0 \times 0 \times 3/8 \times 0$</td>
<td>0</td>
</tr>
<tr>
<td>ctataaaccttcctacat</td>
<td>$1/8 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 7/8$</td>
<td>.0004</td>
</tr>
</tbody>
</table>
aaacct is the P-most probable 6-mer in:

catakaacctttacactc

because $\text{Prob}(\text{aaacct}|\text{P}) = .0336$ is greater than the $\text{Prob}(a|\text{P})$ of any other 6-mer in the sequence.
Dealing with Zeroes

• In our toy example $\text{prob}(a | P) = 0$ in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.

• To avoid many entries with $\text{prob}(a | P) = 0$, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero (we will not address these techniques here).
P-Most Probable l-mers in Many Sequences

- Find the P-most probable l-mer in each of the sequences.

\[
P = \begin{array}{cccccc}
\text{A} & 1/2 & 7/8 & 3/8 & 0 & 1/8 & 0 \\
\text{C} & 1/8 & 0 & 1/2 & 5/8 & 3/8 & 0 \\
\text{T} & 1/8 & 1/8 & 0 & 0 & 1/4 & 7/8 \\
\text{G} & 1/4 & 0 & 1/8 & 3/8 & 1/4 & 1/8 \\
\end{array}
\]

cctataaacgttacatcctagcgattcgactgcagcccagaaaccctcggtatacctttacatc
tgcattcaatagccttatccttttccactcactctccaaatcctttaccggtcatcctttatcctt
P-Most Probable l-mers in Many Sequences (cont’d)

ctataaacgttacatc
atatcgattcgactg
cagccccgaaccct
cggtgaacctttacatc
tgcattcaatagctta
tgctcctgtccactcactc
tccaaatccttttaca
ggcttacctttttatcct

| P-Most Probable l-mers form a new profile |
|----------------|----------------|----------------|----------------|----------------|
| 1 | a | a | a | c | g | t |
| 2 | a | t | a | g | c | g |
| 3 | a | a | c | c | c | t |
| 4 | g | a | a | c | c | t |
| 5 | a | t | a | g | c | t |
| 6 | g | a | c | c | t | g |
| 7 | a | t | c | c | t | t |
| 8 | t | a | c | c | t | t |
| A | 5/8 | 5/8 | 4/8 | 0 | 0 | 0 |
| C | 0 | 0 | 4/8 | 6/8 | 4/8 | 0 |
| T | 1/8 | 3/8 | 0 | 0 | 3/8 | 6/8 |
| G | 2/8 | 0 | 0 | 2/8 | 1/8 | 2/8 |
Comparing New and Old Profiles

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>g</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>g</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>t</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>7</td>
<td>t</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5/8</th>
<th>5/8</th>
<th>4/8</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>4/8</td>
<td>6/8</td>
<td>4/8</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>3/8</td>
<td>0</td>
<td>0</td>
<td>3/8</td>
<td>6/8</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>2/8</td>
<td>1/8</td>
<td>2/8</td>
</tr>
<tr>
<td>G</td>
<td>2/8</td>
<td>6/8</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Red – frequency increased, Blue – frequency decreased
Greedy Profile Motif Search

Use P-Most probable l-mers to adjust start positions until we reach a “best” profile; this is the motif.

1) Select random starting positions.
3) Create a profile \(P \) from the substrings at these starting positions.
4) Find the \(P \)-most probable l-mer \(a \) in each sequence and change the starting position to the starting position of \(a \).
5) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.
GreedyProfileMotifSearch Algorithm

1. \textbf{GreedyProfileMotifSearch}\((DNA, t, n, l)\)
2. Randomly select starting positions \(s=(s_1, \ldots, s_t)\) from DNA
3. \(\text{bestScore} \leftarrow 0\)
4. \textbf{while} \(\text{Score}(s, DNA) > \text{bestScore}\)
5. \hspace{1em} Form profile \(P\) from \(s\)
6. \hspace{1em} \(\text{bestScore} \leftarrow \text{Score}(s, DNA)\)
7. \hspace{1em} \textbf{for} \hspace{1em} \(i \leftarrow 1\) \ \textbf{to} \ \(t\)
8. \hspace{2em} Find a \(P\)-most probable \(l\)-mer \(a\) from the \(i^{th}\) sequence
9. \hspace{2em} \(s_i \leftarrow \text{starting position of } a\)
10. \textbf{return} \(\text{bestScore}\)
GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.
Gibbs Sampling

• GreedyProfileMotifSearch is probably not the best way to find motifs.

• However, we can improve the algorithm by introducing **Gibbs Sampling**, an iterative procedure that discards one l-mer after each iteration and replaces it with a new one.

• Gibbs Sampling proceeds more slowly and chooses new l-mers at random increasing the odds that it will converge to the correct solution.
How Gibbs Sampling Works

1) Randomly choose starting positions
 $s = (s_1, ..., s_t)$ and form the set of l-mers associated
 with these starting positions.

2) Randomly choose one of the t sequences.

3) Create a profile P from the other $t - 1$ sequences.

4) For each position in the removed sequence,
 calculate the probability that the l-mer starting at
 that position was generated by P.

5) Choose a new starting position for the removed
 sequence at random based on the probabilities
 calculated in step 4.

6) Repeat steps 2-5 until there is no improvement
Gibbs Sampling: an Example

Input:

\[t = 5 \text{ sequences, motif length } l = 8 \]

1. GTAAACAATATTTATAGC
2. AAAATTTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA
Gibbs Sampling: an Example

1) Randomly choose starting positions, \(s = (s_1, s_2, s_3, s_4, s_5) \) in the 5 sequences:

\[
\begin{align*}
 s_1 &= 7 & \text{GTAAAC} & \text{AATATTTATAGC} \\
 s_2 &= 11 & \text{AAAAATTTACC} & \text{TTAGAAGG} \\
 s_3 &= 9 & \text{CCGTACTG} & \text{TCAAGCGTGG} \\
 s_4 &= 4 & \text{TGA} & \text{GTAAACGACGTCCCA} \\
 s_5 &= 1 & \text{TACTTAAC} & \text{ACCCTGTCAA}
\end{align*}
\]
Gibbs Sampling: an Example

2) Choose one of the sequences at random:

Sequence 2: AAAATTTTACCTTTAGAAGG

\[s_1 = 7 \] GTAAACAATTATTTATAGC

\[s_2 = 11 \] AAAATTTTACCTTTAGAAGG

\[s_3 = 9 \] CCGTACTGTCGAAGCGGTGG

\[s_4 = 4 \] TGAGTAAACGAGCGTCCA

\[s_5 = 1 \] TACTTTAACACCCTGTCAAA
Gibbs Sampling: an Example

2) Choose one of the sequences at random:

Sequence 2: AAAATTTTACCTTTAGAAGG

\[s_1 = 7 \quad \text{GTAAAC} \text{AATATTTTATAGC} \]

\[s_3 = 9 \quad \text{CCGTACTGTCAAGCGTG} \text{GG} \]

\[s_4 = 4 \quad \text{TGAGTAAACGA} \text{CGTCCCA} \]

\[s_5 = 1 \quad \text{TACTTAAACACCCTGTCAA} \]
Gibbs Sampling: an Example

3) Create profile \(P \) from \(l \)-mers in remaining 4 sequences:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/4</td>
<td>2/4</td>
<td>2/4</td>
<td>3/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>2/4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>2/4</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>T</td>
<td>2/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>2/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
</tr>
</tbody>
</table>

Consensus String: T A A A T C G A

12/8/09 Comp 590/Comp 790-90 Fall 2009
Gibbs Sampling: an Example

4) Calculate the $\text{prob}(a \mid P)$ for every possible 8-mer in the removed sequence:

Strings Highlighted in Red

<table>
<thead>
<tr>
<th>String</th>
<th>$\text{prob}(a \mid P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0.000732</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0.000122</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0.000183</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0</td>
</tr>
<tr>
<td>AAAATTTA CTTTGAAGG</td>
<td>0</td>
</tr>
</tbody>
</table>
Gibbs Sampling: an Example

5) Create a distribution of probabilities of l-mers \(\text{prob}(a|P) \), and randomly select a new starting position based on this distribution.

a) To create this distribution, divide each probability \(\text{prob}(a|P) \) by the lowest probability:

Starting Position 1: \(\text{prob}(\text{AAAATTATA} | P) = 0.000732 / 0.000122 = 6 \)

Starting Position 2: \(\text{prob}(\text{AAATTTAC} | P) = 0.000122 / 0.000122 = 1 \)

Starting Position 8: \(\text{prob}(\text{ACCTTAGA} | P) = 0.000183 / 0.000122 = 1.5 \)

Ratio = 6 : 1 : 1.5
b) Define probabilities of starting positions according to computed ratios

Probability (Selecting Starting Position 1): \(\frac{6}{6+1+1.5} = 0.706 \)

Probability (Selecting Starting Position 2): \(\frac{1}{6+1+1.5} = 0.118 \)

Probability (Selecting Starting Position 8): \(\frac{1.5}{6+1+1.5} = 0.176 \)
c) Select the start position according to computed ratios:

\[
\begin{align*}
P(\text{selecting starting position 1}) & : 0.706 \\
P(\text{selecting starting position 2}) & : 0.118 \\
P(\text{selecting starting position 8}) & : 0.176
\end{align*}
\]
Gibbs Sampling: an Example

Assume we select the substring with the highest probability – then we are left with the following new substrings and starting positions.

\[s_1 = 7 \quad \text{GTAAAC}\textcolor{red}{AATATT}TATTAGC \]
\[s_2 = 1 \quad \text{AAAATTTA}\textcolor{red}{CCTCGCAAGG} \]
\[s_3 = 9 \quad \text{CCGTACTG}\textcolor{red}{TCAAGCGT}\text{GG} \]
\[s_4 = 5 \quad \text{TGAGT}\textcolor{red}{AATCGACGT}\text{CCCA} \]
\[s_5 = 1 \quad \text{TACTT}\textcolor{red}{CACACCCTG}\text{GTCAA} \]
Gibbs Sampling: an Example

6) We iterate the procedure again with the above starting positions until we cannot improve the score any more.
Gibbs Sampler in Practice

• Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach).
• Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
• Needs to be run with many randomly chosen seeds to achieve good results.
Another Randomized Approach

- **Random Projection Algorithm** is a different way to solve the Motif Finding Problem.
- **Guiding principle:** Some instances of a motif agree on a subset of positions.
- However, it is unclear how to find these “non-mutated” positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the pattern creating a **projection** of the pattern.
- Search for that projection in a hope that the selected positions are not affected by mutations in most instances of the motif.
Projections

- Choose k positions in string of length l.
- Concatenate nucleotides at chosen k positions to form k-tuple.
- This can be viewed as a projection of l-dimensional space onto k-dimensional subspace.

$l = 15$

ATGGCATTTCAAGATTT

Projection $k = 7$

TGCTGAT

Projection = (2, 4, 5, 7, 11, 12, 13)
Random Projections Algorithm

- Select k out of l positions uniformly at random.
- For each l-tuple in input sequences, hash into bucket based on letters at k selected positions.
- Recover motif from enriched bucket that contain many l-tuples.

Input sequence:

\[\ldots T C A A T G C A C C T A T \ldots \]

Bucket TGCT

\[\text{TGCACCT} \]
Random Projections Algorithm (cont’d)

• Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills in is increasing.

• In the example below, the bucket **GC*AC is “bad” while the bucket AT**G*C is “good”

```
...ccATCCGACca...
...ttATGAGGCtc...
...ctATAAAGTCgc...
...tcATGTGACac...
```

ATGCAGTC

(7,2) motif
• \(l = 7 \) (motif size), \(k = 4 \) (projection size)
• Choose projection \((1,2,5,7)\)
Hashing and Buckets

• Hash function $h(x)$ obtained from k positions of projection.
• Buckets are labeled by values of $h(x)$.
• *Enriched buckets*: contain more than s l-tuples, for some parameter s.
Motif Refinement

• How do we recover the motif from the sequences in the enriched buckets?
• k nucleotides are from hash value of bucket.
• Use information in other $l-k$ positions as starting point for local refinement scheme, e.g. Gibbs sampler.

Local refinement algorithm

ATGC

ATCCGAC
ATGAGGC
ATAAGTC
ATGCGAC

ATGCGAC
Candidate motif
Synergy between Random Projection and Gibbs Sampler

• Random Projection is a procedure for finding good starting points: every enriched bucket is a potential starting point.
• Feeding these starting points into existing algorithms (like Gibbs sampler) provides good local search in vicinity of every starting point.
• These algorithms work particularly well for “good” starting points.
Building Profiles from Buckets

ATCCGAC
ATGAGGC
ATAAGTC
ATGTGAC
ATGC

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>0</th>
<th>.25</th>
<th>.50</th>
<th>0</th>
<th>.50</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>.25</td>
<td>.25</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>.50</td>
<td>0</td>
<td>1</td>
<td>.25</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.25</td>
<td>0</td>
<td>.25</td>
<td>0</td>
</tr>
</tbody>
</table>

Profile P

Gibbs sampler

Refined profile P*

12/8/09
Comp 590/Comp 790-90
Fall 2009
Motif Refinement

• For each bucket h containing more than s sequences, form profile $P(h)$

• Use Gibbs sampler algorithm with starting point $P(h)$ to obtain refined profile P^*
Random Projection Algorithm: A Single Iteration

- Choose a random k-projection.
- Hash each l-mer x in input sequence into bucket labeled by $h(x)$
- From each enriched bucket (e.g., a bucket with more than s sequences), form profile P and perform Gibbs sampler motif refinement
- Candidate motif is best found by selecting the best motif among refinements of all enriched buckets.
Choosing Projection Size

- Projection size \(k \)
 - choose \(k \) small enough so that several motif instances hash to the same bucket.
 - choose \(k \) large enough to avoid contamination by spurious \(l \)-mers:
 \[
 4^k \gg t (n - l + 1)
 \]
How Many Iterations?

- *Planted bucket*: bucket with hash value $h(M)$, where M is the motif.
- Choose $m =$ number of iterations, such that

$$\Pr(\text{planted bucket contains at least } s \text{ sequences in at least one of } m \text{ iterations}) = 0.95$$

- Probability is readily computable since iterations form a sequence of independent Bernoulli trials